1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
| import torch import torch.nn as nn import torch.optim as optim from torchvision import transforms from PIL import Image import math import torch.nn.functional as F from torchvision import transforms
class MortisNet(nn.Module): def __init__(self): super(MortisNet, self).__init__() self.conv1 = nn.Conv2d(3, 16, kernel_size=3, padding=1) self.conv2 = nn.Conv2d(16, 32, kernel_size=3, padding=1) self.conv3 = nn.Conv2d(32, 64, kernel_size=3, padding=1) self.dropout1 = nn.Dropout(0.32123432) self.fc1 = nn.Linear(64 * 64 * 64, 512) self.fc2 = nn.Linear(512, 64) self.fc3 = nn.Linear(64, 1)
def forward(self, x): x = F.relu(self.conv1(x)) x = F.max_pool2d(x, 2) x = F.relu(self.conv2(x)) x = F.max_pool2d(x, 2) x = F.relu(self.conv3(x)) x = F.max_pool2d(x, 2) x = torch.flatten(x, 1) x = self.dropout1(x) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = torch.sigmoid(self.fc3(x)) return x
model = MortisNet() model.load_state_dict(torch.load("Mortis/mortis.pth", map_location='cpu', weights_only=True)) model.eval()
transform = transforms.Compose([ transforms.Resize((512, 512)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ])
def generate_adversarial_example(original_path, output_path): epsilon_start = 0.01 epsilon_max = 0.1 alpha = 0.0002 momentum_decay = 0.9 max_iterations = 300 early_stop_threshold = 0.95
original_image = Image.open(original_path).convert('RGB') original_tensor = transform(original_image).unsqueeze(0).requires_grad_(True) target = torch.tensor([[1.0]], requires_grad=False) optimizer = optim.Adam([original_tensor], lr=alpha) criterion = nn.BCELoss() epsilon = epsilon_start grad_history = torch.zeros_like(original_tensor) best_output = 0.0 best_psnr = 0.0 best_tensor = None
for i in range(max_iterations): optimizer.zero_grad() output = model(original_tensor) loss = -criterion(output, target) loss.backward() grad = original_tensor.grad.data grad = grad / torch.mean(torch.abs(grad), dim=(1,2,3), keepdim=True) grad_history = momentum_decay * grad_history + grad epsilon = min(epsilon_start + (epsilon_max - epsilon_start)*(i/max_iterations), epsilon_max) adv_tensor = original_tensor + alpha * grad_history.sign() adv_tensor = torch.min(torch.max(adv_tensor, original_tensor - epsilon), original_tensor + epsilon) adv_tensor = torch.clamp(adv_tensor, -2.1179, 2.64) original_tensor.data = adv_tensor.detach().requires_grad_(True) if i % 10 == 0: with torch.no_grad(): temp_path = "Mortis/temp_adv.png" denorm = transforms.Normalize( mean=[-0.485/0.229, -0.456/0.224, -0.406/0.225], std=[1/0.229, 1/0.224, 1/0.225] ) temp_img = transforms.ToPILImage()(denorm(adv_tensor[0]).clamp(0,1)) temp_img.save(temp_path) current_psnr = calculate_psnr(original_path, temp_path) if output.item() > best_output and current_psnr >= 35: best_output = output.item() best_psnr = current_psnr best_tensor = adv_tensor.clone() print(f"Iter {i:3d}: Loss {loss.item():.4f} | Output {output.item():.4f} | PSNR {current_psnr:.2f}dB | ε {epsilon:.4f}")
if output.item() >= early_stop_threshold and current_psnr >= 40: break
def denormalize(tensor): mean = torch.tensor([0.485, 0.456, 0.406]).view(1,3,1,1) std = torch.tensor([0.229, 0.224, 0.225]).view(1,3,1,1) return torch.clamp(tensor * std + mean, 0, 1) final_tensor = best_tensor if best_tensor is not None else adv_tensor adv_denorm = denormalize(final_tensor).squeeze(0) adv_image = transforms.ToPILImage()(adv_denorm) adv_image.save(output_path)
def calculate_psnr(img1_path, img2_path): img1 = Image.open(img1_path).convert('RGB') img2 = Image.open(img2_path).convert('RGB') transform_psnr = transforms.Compose([ transforms.Resize((512, 512)), transforms.ToTensor() ]) img1_tensor = transform_psnr(img1) img2_tensor = transform_psnr(img2) mse = torch.mean((img1_tensor - img2_tensor) ** 2) if mse == 0: return float('inf') max_pixel = 1.0 return 20 * math.log10(max_pixel / math.sqrt(mse.item()))
def verify_attack(original_path, adversarial_path): psnr = calculate_psnr(original_path, adversarial_path) adv_image = Image.open(adversarial_path).convert('RGB') adv_tensor = transform(adv_image).unsqueeze(0) with torch.no_grad(): output = model(adv_tensor).item() print("\n========== 验证结果 ==========") print(f"PSNR: {psnr:.2f} dB") print(f"模型输出: {output:.4f}") if psnr >= 40 and output >= 0.9: print("✅ 攻击成功!可以提交该图片") return True else: print("❌ 攻击失败,请调整参数重试") return False
if __name__ == "__main__": ORIGINAL_PATH = "Mortis/original_soyo.png" ADVERSARIAL_PATH = "Mortis/adv_soyo.png" generate_adversarial_example(ORIGINAL_PATH, ADVERSARIAL_PATH) success = verify_attack(ORIGINAL_PATH, ADVERSARIAL_PATH) if success: print("\n✨ 成功生成符合要求的对抗样本!")
|